4. Median of Sorted Arrays
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n)).
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
- nums1.length == m
- nums2.length == n
- 0 <= m <= 1000
- 0 <= n <= 1000
- 1 <= m + n <= 2000
- -106 <= nums1[i], nums2[i] <= 106
Solution:
JavaScript
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
const findMedianSortedArrays = function (nums1, nums2) {
if (nums1.length > nums2.length) {
return findMedianSortedArrays(nums2, nums1);
}
var m = nums1.length;
var n = nums2.length;
var start = 0;
var end = m;
while (start <= end) {
const partitionNums1 = Math.floor((start + end) / 2);
const partitionNums2 = Math.floor((m + n + 1) / 2) - partitionNums1;
const maxLeftNums1 = partitionNums1 == 0 ? Number.MIN_SAFE_INTEGER : nums1[partitionNums1 - 1];
const minRightNums1 = partitionNums1 == m ? Number.MAX_SAFE_INTEGER : nums1[partitionNums1];
const maxLeftNums2 = partitionNums2 == 0 ? Number.MIN_SAFE_INTEGER : nums2[partitionNums2 - 1];
const minRightNums2 = partitionNums2 == n ? Number.MAX_SAFE_INTEGER : nums2[partitionNums2];
if (maxLeftNums1 <= minRightNums2 && maxLeftNums2 <= minRightNums1) {
if ((m + n) % 2 == 0) {
return (Math.max(maxLeftNums1, maxLeftNums2) + Math.min(minRightNums1, minRightNums2)) / 2.0;
} else {
return Math.max(maxLeftNums1, maxLeftNums2);
}
}
else if (maxLeftNums1 > minRightNums2) {
end = partitionNums1 - 1;
}
else {
start = partitionNums1 + 1;
}
}
};